Current requirements for polymeric biomaterials in otolaryngology

نویسنده

  • Katrin Sternberg
چکیده

In recent years otolaryngology was strongly influenced by newly developed implants which are based on both, innovative biomaterials and novel implant technologies. Since the biomaterials are integrated into biological systems they have to fulfill all technical requirements and accommodate biological interactions. Technical functionality relating to implant specific mechanical properties, a sufficiently high stability in terms of physiological conditions, and good biocompatibility are the demands with regard to suitability of biomaterials. The goal in applying biomaterials for implants is to maintain biofunctionality over extended periods of time. These general demands to biomaterials are equally valid for use in otolaryngology. Different classes of materials can be utilized as biomaterials. Metals belong to the oldest biomaterials. In addition, alloys, ceramics, inorganic glasses and composites have been tested successfully. Furthermore, natural and synthetic polymers are widely used materials, which will be in the focus of the current article with regard to their properties and usage as cochlear implants, osteosynthesis implants, stents, and matrices for tissue engineering. Due to their application as permanent or temporary implants materials are differentiated into biostable and biodegradable polymers. The here identified general and up to date requirements for biomaterials and the illustrated applications in otolaryngology emphasize ongoing research efforts in this area and at the same time demonstrate the high significance of interdisciplinary cooperation between natural sciences, engineering, and medical sciences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors

In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...

متن کامل

Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering.

Different scaffolds have been designed for ligament tissue engineering. Knitted scaffolds of poly-L-lactic acid (PLLA) yarns and co-polymeric yarns of PLLA and poly(glycolic acid) (PLGA) were characterized in the current study. The knitted scaffolds were immersed in medium for 20 weeks, before mass loss, molecular weight, pH value change in medium were tested; changes in mechanical properties w...

متن کامل

Rationalizing the design of polymeric biomaterials.

Polymers are a promising class of biomaterials that can be engineered to meet specific end-use requirements. They can be selected according to key 'device' characteristics such as mechanical resistance, degradability, permeability, solubility and transparency, but the currently available polymers need to be improved by altering their surface and bulk properties. The design of macromolecules mus...

متن کامل

Plasma surface modification in biomedical applications.

New medical products, materials and surgical procedures keep improving current health-care practices. Many of these innovations involve polymeric devices that must meet certain clinical and cost requirements. Chief among these pressures is the need for biocompatibility between the physiological environment and the biomaterial surface. Plasma surface modification can improve biocompatibility and...

متن کامل

Bioresorbable polymeric stents: current status and future promise.

Metal stents and, more recently, polymer-coated metal stents are used to stabilize dissections, eliminate vessel recoil, and guide remodeling after balloon angioplasty and other treatments for arterial disease. Bioresorbable polymeric stents are being developed to improve the biocompatibility and the drug reservoir capacity of metal stents, and to offer a transient alternative to the permanent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2009